Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoluminescence characterization of GaInNAs/GaAs quantum well carrier dynamics

Identifieur interne : 00C007 ( Main/Repository ); précédent : 00C006; suivant : 00C008

Photoluminescence characterization of GaInNAs/GaAs quantum well carrier dynamics

Auteurs : RBID : Pascal:03-0352524

Descripteurs français

English descriptors

Abstract

Variable temperature photoluminescence (PL) measurement of a thermal-annealed 6 nm GaInNAs/GaAs quantum well (QW) is carried out to understand its low-temperature carrier dynamic characteristics. It is found that the effect of carrier localization, which remained after a thermal anneal, is due possibly to a center characterized by a transition with activation energy of 13.7 meV below the e1 state. This result is deduced from fitting the integrated PL intensity versus the temperature data with a single-activation-energy model. A comparable value of 11 meV was also obtained between the low-energy (main localized state) and high-energy (e1 state) Gaussian functions used to fit the low-temperature PL spectrum. The localization effect in the thermal-annealed GaInNAs/GaAs QW is further confirmed by time-resolved PL measurements at 17 K, which showed emission-energy-dependent PL decay time characteristic for the low-energy regime (below 1.045 eV) and nearly constant decay time of about 0.14 ns at the high-energy regime, which corresponds to the e1-hh1 transition lifetime. The main localization center could form carrier traps that reduce the e1-hh1 PL transition efficiency. © 2003 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0352524

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photoluminescence characterization of GaInNAs/GaAs quantum well carrier dynamics</title>
<author>
<name sortKey="Ng, T K" uniqKey="Ng T">T. K. Ng</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Singapore-Massachusetts Institute of Technology (MIT) Alliance, Nanyang Technological University, Nanyang Avenue, Singapore 639798</s1>
</inist:fA14>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Applied Physics, National Chiayi University, 300 University Road, Chiayi City 600, Taiwan</s1>
</inist:fA14>
<country xml:lang="fr">République de Chine (Taïwan)</country>
<wicri:regionArea>Department of Applied Physics, National Chiayi University, 300 University Road, Chiayi City 600</wicri:regionArea>
<wicri:noRegion>Chiayi City 600</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoon, S F" uniqKey="Yoon S">S. F. Yoon</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, S Z" uniqKey="Wang S">S. Z. Wang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lin, L H" uniqKey="Lin L">L.-H. Lin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ochiai, Y" uniqKey="Ochiai Y">Y. Ochiai</name>
</author>
<author>
<name sortKey="Matsusue, T" uniqKey="Matsusue T">T. Matsusue</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0352524</idno>
<date when="2003-09-01">2003-09-01</date>
<idno type="stanalyst">PASCAL 03-0352524 AIP</idno>
<idno type="RBID">Pascal:03-0352524</idno>
<idno type="wicri:Area/Main/Corpus">00CC72</idno>
<idno type="wicri:Area/Main/Repository">00C007</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Photoluminescence</term>
<term>Semiconductor quantum wells</term>
<term>Time resolved spectra</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7855C</term>
<term>7867D</term>
<term>7847</term>
<term>6172C</term>
<term>Etude expérimentale</term>
<term>Gallium arséniure</term>
<term>Indium composé</term>
<term>Semiconducteur III-V</term>
<term>Puits quantique semiconducteur</term>
<term>Photoluminescence</term>
<term>Spectre résolution temporelle</term>
<term>Recuit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Variable temperature photoluminescence (PL) measurement of a thermal-annealed 6 nm GaInNAs/GaAs quantum well (QW) is carried out to understand its low-temperature carrier dynamic characteristics. It is found that the effect of carrier localization, which remained after a thermal anneal, is due possibly to a center characterized by a transition with activation energy of 13.7 meV below the e1 state. This result is deduced from fitting the integrated PL intensity versus the temperature data with a single-activation-energy model. A comparable value of 11 meV was also obtained between the low-energy (main localized state) and high-energy (e1 state) Gaussian functions used to fit the low-temperature PL spectrum. The localization effect in the thermal-annealed GaInNAs/GaAs QW is further confirmed by time-resolved PL measurements at 17 K, which showed emission-energy-dependent PL decay time characteristic for the low-energy regime (below 1.045 eV) and nearly constant decay time of about 0.14 ns at the high-energy regime, which corresponds to the e1-hh1 transition lifetime. The main localization center could form carrier traps that reduce the e1-hh1 PL transition efficiency. © 2003 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>94</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photoluminescence characterization of GaInNAs/GaAs quantum well carrier dynamics</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NG (T. K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YOON (S. F.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WANG (S. Z.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LIN (L.-H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>OCHIAI (Y.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MATSUSUE (T.)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Singapore-Massachusetts Institute of Technology (MIT) Alliance, Nanyang Technological University, Nanyang Avenue, Singapore 639798</s1>
</fA14>
<fA14 i1="03">
<s1>Department of Applied Physics, National Chiayi University, 300 University Road, Chiayi City 600, Taiwan</s1>
</fA14>
<fA14 i1="04">
<s1>Department of Materials Technology, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522 Japan</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>3110-3114</s1>
</fA20>
<fA21>
<s1>2003-09-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2003 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>03-0352524</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Variable temperature photoluminescence (PL) measurement of a thermal-annealed 6 nm GaInNAs/GaAs quantum well (QW) is carried out to understand its low-temperature carrier dynamic characteristics. It is found that the effect of carrier localization, which remained after a thermal anneal, is due possibly to a center characterized by a transition with activation energy of 13.7 meV below the e1 state. This result is deduced from fitting the integrated PL intensity versus the temperature data with a single-activation-energy model. A comparable value of 11 meV was also obtained between the low-energy (main localized state) and high-energy (e1 state) Gaussian functions used to fit the low-temperature PL spectrum. The localization effect in the thermal-annealed GaInNAs/GaAs QW is further confirmed by time-resolved PL measurements at 17 K, which showed emission-energy-dependent PL decay time characteristic for the low-energy regime (below 1.045 eV) and nearly constant decay time of about 0.14 ns at the high-energy regime, which corresponds to the e1-hh1 transition lifetime. The main localization center could form carrier traps that reduce the e1-hh1 PL transition efficiency. © 2003 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H67D</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H47</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60A72C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7867D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7847</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>6172C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Spectre résolution temporelle</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Time resolved spectra</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Recuit</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Annealing</s0>
</fC03>
<fN21>
<s1>246</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0333M000184</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00C007 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00C007 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:03-0352524
   |texte=   Photoluminescence characterization of GaInNAs/GaAs quantum well carrier dynamics
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024